Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2027
-
Free, publicly-accessible full text available July 2, 2026
-
Abstract The capture, utilization, and storage of CO2are the primary options to minimize the adverse effects of global warming and related climate change resulting from increased anthropogenic CO2emissions. In recent years, amino acids and amino acid‐based ionic liquids (AAILs) are proposed as promising alternatives to the traditional aqueous amine solvent‐based CO2capture technology due to the presence of the ─NH2group and a CO2adsorption mechanism like amines, but with many additional advantages. Besides CO2absorption in solvent form, amino acids/AAILs‐functionalized porous sorbents demonstrate potential in CO2adsorption technology, a promising alternative to solvent‐based CO2absorption technology, as they can avoid the huge energy penalty associated with aqueous solution regeneration by heating. Additionally, amino acids/AAILs, with their CO2capture abilities, have demonstrated their potential in other promising CO2sequestration technologies: direct air capture, CO2mineralization using alkaline industrial waste, and conversion of CO2into value‐added products. This article reviews the mechanism, comparative performance, and prospects of amino acid‐based state‐of‐the‐art technologies for CO2absorption and adsorption, direct air capture, bio‐mineralization, and conversion of CO2into value‐added products, which is helpful for the further development of amino acid‐based CO2sequestration technologies.more » « lessFree, publicly-accessible full text available December 1, 2026
-
The complex distribution of functional groups in carbohydrates, coupled with their strong solvation in water, makes them challenging targets for synthetic receptors. Despite extensive research into various molecular frameworks, most synthetic carbohydrate receptors have exhibited low affinities, and their interactions with sugars in aqueous environments remain poorly understood. In this work, we present a simple pyridinium-based hydrogen-bonding receptor derived from a subtle structural modification of a well-known tetralactam macrocycle. This small structural change resulted in a dramatic enhancement of glucose binding affinity, increasing from 56 M−1 to 3001 M−1. Remarkably, the performance of our synthetic lectin surpasses that of the natural lectin, concanavalin A, by over fivefold. X-ray crystallography of the macrocycle–glucose complex reveals a distinctive hydrogen bonding pattern, which allows for a larger surface overlap between the receptor and glucose, contributing to the enhanced affinity. Furthermore, this receptor possesses allosteric binding sites, which involve chloride binding and trigger receptor aggregation. This unique allosteric process reveals the critical role of structural flexibility in this hydrogen-bonding receptor for the effective recognition of sugars. We also demonstrate the potential of this synthetic lectin as a highly sensitive glucose sensor in aqueous solutions.more » « less
-
In the past three years, the COVID-19 pandemic has caused serious health, environmental, societal, and economic challenges globally. Sterilization is one of the most efficient methods to mitigate the spread of infectious viruses like SARS-CoV-2. However, extreme sterilization practices can cause serious health and environmental problems worldwide. Heat, ultraviolet C (UVC), and chemical disinfectants require high energy consumption and can cause health concerns, environmental pollution, and chemical overuse. In this paper, we evaluated the efficiency of corona discharge (CD) as an environmentally and energy-friendly sterilization method on different surfaces for sterilization. It was confirmed that CD is an efficient sterilization process for most surfaces and personal protective equipment (PPE). CD allows for a reduction in disinfectant use, addresses the PPE shortage problem, and reduces plastic pollution and biowaste. The air sterilization effect of CD creates a promising option to reduce airborne pathogens. To address the safety concerns of CD, the heat, UVC, and ozone emissions of CD were confirmed to be within a safe range. A wireless, affordable CD robot was developed with the capability to scan along pre-designed paths while having the capability to avoid static and moving obstacles. Automated CD devices and robots can be favorable sterilization solutions for the future as a contactless, more environmentally friendly, efficient, affordable, and portable solution.more » « less
An official website of the United States government
